Matemáticas y reconstrucción en el puente del Cadí
Sin abandonar el entorno urbano de Granada, nos alejamos un poco de la céntrica zona en la que vimos nuestro anterior paseo matemático para identificar curvas catenarias y nos dirigimos a una zona no menos turística y transitada, la Carrera del Darro.
En esta calle que transcurre sobre el río del mismo nombre, nos encontramos con el hoy conocido como puente del Cadí. Ubicado junto al Bañuelo, este primitivo puente fue construido en el año 1055 junto a la mezquita Almanzora, hoy iglesia parroquial de San Gil y Santa Ana.

Restos del puente del Cadí.
En la época Nazarí pasó a llamarse Puerta de Tableros y tenía una importante función estratégica para la ciudad. Servía tanto para alcanzar el suministro de agua a derecha e izquierda del Darro, como para comunicar las dos zonas de la ciudad. Esta doble función hace que a esta estructura se le denomine frecuentemente como puerta-puente.
La construcción original se realizó en piedra caliza y de ella hoy sólo podemos ver un soporte y el comienzo del arco de herradura, que daba forma a esta majestuosa obra de ingeniería hidráulica y defensiva del siglo XI.
El soporte aún perceptible en nuestro paseo tiene forma hexagonal, alargada en sus caras centrales y que sirvió para la construcción de una escalera interior que daba acceso a las aguas del río por una puerta adintelada cuyo vano, tapiado con ladrillo, aún puede observarse en el soporte que queda del puente. El comienzo del arco de herradura, situado en el lado del bosque de la Alhambra, es de gran tamaño con diferentes dovelas, rehundidas y resaltadas, así como cierta decoración policromada.
Para hacernos una idea, podemos ver la siguiente recreación de cómo podría haber sido la puerta-puente:

Reconstrucción de la puerta-puente del Cadí.
Pero en nuestro caso, vamos a hacer una recreación matemática empleando el software Geogebra para tener otro enfoque.
En la mayoría de los casos, el arco empleado para alzar un puente sobre un río suele ser de medio punto, ya que permite tener un gran vano bajo el arco y poder evacuar grandes cantidades de agua en caso de ser necesario. Pero en este caso hemos dicho que tenemos un arco de herradura, el cual tiene el centro del arco elevado sobre sobre la línea de arranques y por lo tanto, ofrece la posibilidad de tener más altura. Esta característica permitiría llegar al nivel de la muralla defensiva existente en la ladera, pudiendo así establecer el paso por la misma.
Gracias al uso de Geogebra, hemos obtenido la altura del centro del arco de herradura C respecto al centro de la línea de arranques, CL (posible centro de un arco de medio punto), resultando ser un 40% del radio del arco, R (distancia de C a H):

Recosntrucciónn con Geogebra de la puerta del Cadí
Para dar una solución en metros a esta interpretación, es necesario conocer el valor de R. Pero al no ser posible, podemos tomar la medida de la secante AB usando un distanciómetro láser con función Pitágoras. Se han tomado desde el punto F las las medidas FA y FB gracias al láser desde la Carrera del Darro.

Reconstrucción del arco.
Con un protocolo de tres intentos, la medida de esta secante es de 3,23 m. A partir de este dato, el radio R resulta ser de 4,1 m. Dado que el arco de herradura resulta sobreelevado un 40% respecto al de medio punto, estamos hablando de que el resultado estaría elevado 1,64 m más del correspondiente de medio punto. Esta diferencia entre uno y otro arco es más que significativa, más aún si consideramos que la elección del arco de herradura posibilitaría la continuidad de un camino sobre la muralla de la Alhambra al Albaicín.
Por tanto, nuestra aproximación ofrece un arco cuya altura es de 5,74 m. Si además consideramos que la altura al río desde la línea de arranques es de 6,75 m., estamos hablando de un gálibo total de 12,5 m. Según algunos autores, la altura sería de 10,8 m. y una anchura de 2,5 m. Por lo que nuestra aproximación con Geogebra nos devuelve un arco aún más alto y monumental que el que se consideraba hasta ahora.
Más sobre paseos matemáticos
La Galería Cervantes de Tánger (C/ Bélgica, 9) acoge hasta el 29 de marzo la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre / Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, una muestra que llega de la mano del Instituto Cervantes en Tánger.
Durante doce días, y con la financiación de la Embajada de España en Mauritania, Álvaro Martínez Sevilla, director científico del proyecto Paseos Matemáticos, en colaboración con el profesor del Departamento de Lenguaje y Sistemas Informáticos de la Universidad de Granada Sergio Alonso, han recorrido las principales localidades que forman esta ruta para recabar información que les permita realizar un estudio matemático geométrico de la arquitectura y decoración local. Con todo el material recopilado, elaborarán la nueva exposición ‘Paseos Matemáticos Al Ándalus y la ruta de las caravanas’ que se inaugurará en 2025 en la capital mauritana y recorrerá también varias ciudades andaluzas.
El Centro de Desarrollo Empresarial Local de Herrera acoge hasta el 18 de enero la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre / Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.