El arco conopial
Característico del gótico flamígero, es un tipo de arco de cuatro centros, que se construye a partir de un cuadrado básico de un cuarto de luz. Esta misma medida se toma para el radio de las cuatro circunferencias pequeñas que han de trazarse, y es la mitad del radio de la mayor.
Característico del gótico flamígero, el arco conopial es un tipo de arco de cuatro centros, que se construye a partir de un cuadrado básico de un cuarto de luz (es decir, la cuarta parte de la anchura), y que etiquetamos en naranja como C1, C2, C3 y C4, tal y como puede verse en la primera imagen. Tomando esta medida como radio, se trazan sendas circunferencias tomando como centro cada uno de los vértices del cuadrado, con línea auxiliar.
Estas circunferencias son tangentes dos a dos. Además, las rectas tangentes a estos puntos de corte se intersecan en el centro del cuadrado original. En azul se ha marcado los fragmentos de arco que vamos a coger para la figura final, en la que iremos alternando para conseguir ese efecto de cambio entre cóncavo y convexo.
Si trazamos una circunferencia exterior a las dos circunferencias exteriores, tomando como centro el punto de tangencia entre ambas, y como radio el diámetro de ellas se puede comprobar que su superficie es cuatro veces la cada circunferencia original (debido a que la fórmula de la superficie es pi por el radio al cuadrado, queda multiplicada por cuatro, el cuadrado del doble de la medida original).
Así, se puede comprobar que la superficie que cubre el arco es 4 veces el cuadrado del radio. Es decir, cuatro cuadrados básicos. A simple vista, basta con darse cuenta de que el fragmento superior se puede construir con las partes que faltan a los lados.
En las imágenes se observa cómo queda la construcción con #Geogebra, a partir de la puerta principal del Palacio de Abrantes, en #Granada. Este análisis realizado en nuestro #paseosmatemáticos revela, además, las imperfecciones que se cometieron en su construcción, quizás porque no fue diseñado con precisión, bien por impericia de los artesanos.
Más sobre paseos matemáticos
Las instalaciones del antiguo Consulado francés, ubicadas en el casco antiguo de Trípoli, han acogido la inauguración de la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre / Consejería de Universidad, Investigación e Innovación de la Juntade Andalucía. La muestra llega de la mano de la Embajada de España en Libia, la Agencia Española de Cooperación Internacional para el Desarrollo (AECID), el Instituto Cervantes y Old Tripoli City Administration Board.
El atún también 'esconde' su lado más matemático y un análisis geométrico de su cuerpo permite diferenciarlos de otros peces. En concreto, se puede saber si un pez es un atún por su cola. Así lo ha analizado en este artículo publicado en el portal web iDescubre por el director científico de Paseos Matemáticos Álvaro Martínez Sevilla. curiosidades que explican por qué este túnido juega un papel destacado en la cultura bereber.
El Instituto Español Lope de Vega de Nador ha acogido la inauguración de la exposición ‘Paseo Matemático Al-Ándalus’ de la Fundación Descubre. La muestra, que inició su andadura por territorio marroquí en Fez en 2023, está itinerando por los Institutos Españoles de Marruecos, gracias al acuerdo con el Instituto Cervantes de Fez.